
mong a variety of fundamental 
themes running through Stan 
Ulam's mathematical research, 
.one that particularly intrigued 

him was that of similarity. He was con- 
stantly fascinated by the problem of quan- 
tifying exactly how alike (or different) 
two mathematical objects or structures 
were, and during his career he discov- 
ered many ingenious ways of doing so. 
A good example is the well-known Ulam 
distance between finite sequences, which 
has recently been applied so effectively 
in analysis of DNA sequences and recog- 
nition of speech (Sankoff and Kruskal 
1983). (Also see "Sequence Analysis: 
Contributions by Ulam to Molecular Bi- 
ology" in this issue.) 

Here I will describe another measure 
of similarity suggested by Stan, one ap- 
plicable to a wide assortment of combina- 
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torial structures. Like many seeds planted 
by his fertile imagination, this similarity 
measure has taken root and flowered in 
the modem mathematical jungle. 

The story begins one morning in late 
July of 1977, during one of my aperi- 
odic visits to Stan and Franqoise's mar- 
velous house on the outskirts of Santa Fe. 
Stan and I had just finished playing ten- 
nis, which not only generated a plenti- 
ful supply of perspiration (and consequent 
thirst) but also inevitably led to a lively 
discussion of the differences in the game 
at an altitude of over 7000 feet, where the 
balls are effectively more highly pressur- 
ized, the air resistance is diminished, less 
oxygen is available for demanding lungs, 
and so on. 

Perhaps stimulated by trying to get a 
better grasp on understanding just how 
various aspects of the game (such as the 
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EXAMPLES OF GRAPHS 

Fig. 1. Shown here are the pictorial and mathe- 
matical representations of two simple graphs. 
Gl has the maximum number of edges for a 
given number n of vertices (namely, (3, or 
',n(n - 1)). G2 is an example of a graph con- 
sisting of disjoint subgraphs. (For simplicity in 
this and all other figures, the edges of graphs 
are depicted as straight lines.) 

ISOMORPHISM OF GRAPHS Gi 

- /  hi G2 
Fig. 2. Let T be the following one-to-one trans- 

formation of Vl onto V2: al -+ a?, fri -+ d2, 
<: I 1 '̂ " T  

cl Ã‘ bz, dl -+ @, &i -+ c2, and fi -+ f2. t -J./ Ã f 
Since T(El) = Â£2 GI is isomorphic to G2, or, 
symbolically, GI 'S G2. Note that a neces- /b< sary condition for isomorphism of two graphs 
is that they have the same number of vertices 

f1 "\ ,/ di 
and edges. The relation of isomorphism, like >̂  \. that of equality in arithmetic, is reflexive, sym- 
metric, and transitive. That is, G '2 G; if '1 = ial bi 

serve, the stroke, and the strategy) might 
change under varying conditions, Stan 
suddenly suggested, "Why not measure 
the difference between objects by trying 
to break them up into as few as possible 
pairwise equal pieces?" At first I didn't 
see quite what Stan was driving at (which 
happened fairly often), but after we talked 
it over, it became clear that here was an 
entirely new way of defining a measure 
of similarity between two (or more) com- 
binatorial structures. In fact, it is very 
much akin to comparing two complex 
molecules by breaking them up into a 
number of pairwise identical fragments- 
the smaller the number of pieces needed, 
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the more similar are the molecules. 
Our first application of the approach 

was to a class of mathematical objects 
known as graphs. Simply speaking, a 
graph G consists of a set V of elements 
called the vertices of G and a set E of 
certain pairs of elements of V called the 
edges of G. Graphs are often pictured by 
representing the vertices in V as points 
and the edges as lines between the pairs 
of points in E (Fig. 1). 

Before proceeding to the main topic 
of the article, we need two more ba- 
sic definitions-those for isomorphism of 
graphs and for a partition of the edge set 
of a graph. 

Two graphs G1 and G2 are said to be 
isomorphic (GI F G2) if, as shown in 
Fig. 2, a one-to-one transformation of Vi 
onto V2 effects a one-to-one transforrna- 
tion of E l  onto E2. 

By a partition of the edge set E of a 
graph G is meant a set of pairwise disjoint 
subsets Ei of E such that Ui Ei = E 
(Fig. 3). (The number of ways to partition 
an edge set depends, in a complicated 
way, on the number of edges of the graph, 
e(G).) 

We now come to the key definitions. 
Let G and G' be two graphs having the 
same number of edges. An Ulam decom- 
position of G and G' is a pair of par- 
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PARTITIONS OF THE EDGE SET 
OF A GRAPH 

Fig. 3. The edge set E of the graph G can be ui Ei = E) in numerous ways, two of which 
partitioned (divided into subsets Ei such that are illustrated here. 

Partition P Partition P1 

El = { ( v l ,  ~ 2 1 ,  ( V I  , ~ 3 1 ,  ( ~ 2 ,  ~ 3 ) )  E+ { ( v l  v z ) }  Eg = { ( V I  7 v 3 ) }  Eg = { ( V I  , v 4 ) I  

E2 = {(^'I 3 ~ 4 1 ,  ( ~ 2 ,  v 4 ) ,  ( ~ 3 ,  ~ 4 ) )  E; = { ( ~ 2 ,  ~ 3 ) }  E; = { ( v z ,  v 4 ) }  EL = { ( ~ 3 ,  ~ 4 ) )  

El U E2 = E E; U El U Eg U Â£ U E; U EL = E 

EXAMPLES OF MINIMUM ULAM 
DECOMPOSITIONS 

Fig. 4. The minimum Ulam decompositions 
shown here illustrate that U(G,  G') is a mea- 
sure of similarity for a pair of graphs that 
agrees with our intuitive notion of their resem- 
blance to each other in the sense of connec- 
tions among vertices: the two graphs in (a) 
bear less resemblance in that sense than do 
the two graphs in (b). 

Minimum Ulam Decomposition of G and G' Minimum Ulam Decomposition of G and G' 

EXAMPLES OF 

Fig. 5. Two examples of Fne, the set of graphs 
each of which has e edges and at most n ver- 
tices. (Graphs with isolated vertices are not 
shown.) In both examples n = 2e, the max- 
imum number of vertices for a given number 
of edges. me for n < 2e is a subset of Face- 

r s , 4  
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titions {E;, . . . , E,.} and { E { ,  . . . , E,!} of CALCULATION OF LOWER BOUNDS ON U(n)  
the respective edge sets of G and G such 

(a) G 
that, as graphs, Ei % E', for 1 < i < r .  

GI 

Such a decomposition always exists since 
we can always choose each Ei (and E') 
to be a single edge (and by hypothesis 
e(G) = e(Gf)). Further, define U (G , G') 

kq,i 
to be the least value of r for which an k + l  
Ulam decomposition of G and G' into r 
parts exists. (Figure 4 shows such mini- 

Minimum Ulam Decomposition 

mum Ulam decompositions for two pairs 
of graphs.) Thus U (G , G') is a similarity 
measure for pairs of graphs: the smaller 
U (G , G ') is, the more alike G and G' are. 
In particular, U (G, G') = 1 exactly when 
G and G' are isomorphic (that is, when (b) Minimum Ulam Decomposition 

they differ only in the way their vertices 
are labeled). 

We now extend our view from a single 
pair of graphs with the same number of 
edges to sets of graphs F n e  with e edges 
and at most n vertices (Fig. 5) and define 
the function U (n): 

So in U(n) we have a measure of the 
maximum dissimilarity among all pairs of 
graphs in me. 

A fundamental question about U (n) 
that occurs at the outset is this: How 
large can U (n) ever be? To whet your ap- 
petite for the answer to this question, let 
us determine U (G , G') for two examples. 
(U (n) is of course equal to or greater than 
U (G , G').) In the first example G is a 
k-rayed "star" (that is, it consists of one 
vertex joined to each of k others), and 
G consists of k  disjoint edges (Fig. 6a). 
Here e = k  and n = 2 k .  For such a pair 
of graphs, the only Ulam decomposition 

........................................................... 
Fig. 6. By considering pairs of graphs of the This situation might lead one to conclude that 
general form shown in (a), U(n) is found to be U(n) has no upper bound other than (3, the 
equal to or greater than i n ,  whereas by con- greatest possible number of edges possessed 
sidering pairs of graphs of the general form by any graph with n vertices. However, as 
shown in (b), U(n) is found to be greater than demonstrated in the text, U(n) has an upper 
$(n - I),  which is greater than i n  (for n > 4). bound that is linear in n. 

comes from taking each Ei and E', to be 
a single edge. Therefore gles (Fig. 6b). Here e = 3k and n = At this point one may well wonder 

3k + 1. What is U (G, G') for such pairs whether further search will produce even 
1 of graphs? It is not difficult to see that more complicated examples from which 

U(n) 2 U(G,Gt)  = k  = -n. 
2  the best we can do is to decompose each even larger lower bounds on U (n) can 

graph into k  disjoint 2-rayed stars and k be deduced. That this cannot happen 
In the second, slightly more sophisti- disjoint edges. Thus is the content of Theorem 1, which was 

cated example G consists of a 3k-rayed 2 2  the main result in our first paper on the 
star, and G' consists of k  disjoint trian- U(n) >, U(G, G') = 2k = -(n -1) -n. subject (Chung, Erdos, Graham, Ulam, 3 3 

f,os Alamos Science Special Issue 1987 



A Similarity Measure for Graphs 

and Yao 1979). 

Theorem 1. For a suitable fixed constant 
c, U(n) < \n  + c  for all n.  

Our proof of Theorem 1 uses several 
ideas that are now standard items in the 
toolbox of every combinatorialist. One 
is the idea of a greedy algorithm. It 
seems only natural to try to remove the 
largest subgraph common to each of the 
two graphs for which one is seeking a 
minimum Ulam decomposition (although 
in many situations that myopic approach 
is far from optimal). Indeed, such a tech- 
nique is quite effective for the problem 
at hand. However, it leads to the next 
question: Just how large can we expect 
(or guarantee) such a common subgraph 
to be? Here the second technique we 
want to mention comes in, namely, the 
so-called probabilistic method, which was 
pioneered so effectively by Paul Erdos. 
Suppose G and G' each have n vertices 
and e edges. What we will show is that 
they must share a common subgraph H 
having at least 2e2/n(n - 1) edges. How- 
ever, we won't be able to specify what 
H is or how to get it-just that it exists! 
How do we do this? Every mathematical 
paper should have at least one proof, so 
here comes ours. 

Label the vertices of G and G' by, say, 
V = {x ̂ ... ,xn} and V = {xk.  .. ,x^,}. 
Let A denote the set of one-to-one map- 
pings of V onto V '. Thus, A has n! el- 
ements. If y = {x*} and y' = {xL,x!} 
are given elements in V and V', respec- 
tively, there are exactly 2(n -2)! elements 
A E A that map y onto y'. (The factor 
of 2 counts the two possibilities \(xi) = 
xJ., A(xj) = X! and A(xi) = x[, A(xj) = XL .) 
Define the indicator function iA(y^ y'): 

i \(y,yf) = { 1 if A maps y onto y', 
0 otherwise. 

Now sum i&, y') over all A ? A and all 
y E E , y '  E E f :  

In the first step we have interchanged the 
order of summation, and in the second we 
have used the previously noted fact about 
the number of A E A that map any given 
y E E onto any given yf  6 E f .  

Now we note that since S is a sum of 
n ! terms of the form ~ , , ,  i f i ,  y ') (one 
for each A ? A), at least one of those 
terms must equal or exceed their average, 
which of course is just 2e2(n - 2)!/n!, or 
2e2/n(n - 1). In other words, for some 
A E A, say Ao, we have 

2e2 
~ i A 0 ( Y 7 ~ ' )  2 - n(n - 1). 
Y , Y 1  

Having proved that the two graphs G 
and G have a common subgraph H with 
at least 2e2/n(n - 1) edges, suppose now 
that we remove H from G and G', pro- 
ducing the graphs GI and G[, which have 
at most el = e - 2e2/n(n - 1) edges. Our 
theorem says that those graphs also have 
in common a subgraph H l  with at least 
2e2/n(n - 1) edges. Remove H i  to pro- 
duce G2 and Gi, and so on. It is not hard 
to show that after repeating the process 
k times, we have graphs Gk and G; with 
at most n(n - 1)/2k edges. That in turn 
can be used to show that U(n) < f i n .  
To squeeze the last bit of juice out of the 
argument and show that U(n) < $n + c 
requires more complicated considerations 
that we will not go into here. 

I t was only natural that we began to 
wonder next about what happens if in- 

stead of starting with two graphs, we 
start with three (or more). Indeed, defin- 
ing U (GI,  G2, G3) as the minimum value 
of r for which an Ulam decomposition 
of GI ,  G2, and G3 exists and U3(n) as 
rnaxc, , ~ 2 , ~ a â ‚ ¬ r , ,  ~ ( G I ,  G27 G3), we soon 

saw that U3(n) was going to be larger than 
Udn) = U (n) by considering the exam- 
ple shown in Fig. 7. For those triplets 
of graphs, just as for the pairs of graphs 
shown in Fig. 6, the minimum Ulam de- 
composition consists of a certain number 
(approximately i n )  of 2-rayed stars and 
a certain number (approximately i n )  of 
disjoint edges. Thus 

It has been shown (this time by much 
more complicated arguments) that U3(n), 
like U2(n), possesses an upper bound 
(Chung, Erdos, and Graham 1981): 
Theorem 2. For a suitable fixed constant 
c, U3(n) < i n  + c for all n. 

As mathematicians are prone to do, we 
naturally began to look beyond U3(n) to 
the general case, namely 

Uk(n)= max U(G1, ..., Gk). 
GI ,..., ck ern,, 

Here, however, something completely un- 
expected happened. We had been guess- 
ing what the coefficient of n was going 
to be in the bound for U&) (why not 
$?) and more generally for Uk(n) (could 
it be &?). We were quite unprepared 
for the following result, which was finally 
proved with the full arsenal of techniques 
we were rapidly accumulating (Chung, 
Erdos, and Graham 1981): 

Theorem 3. For each k > 3, there is 
a fixed constant such that Uk(n) < 
i n  + ck for all n. 

In other words, the constant factor of 
2 that appears in the bound for U3(n) 
does not increase for values of k greater 
than 3. It is as though the space of n- 
vertex graphs is in some sense "three- 
dimensional," and once you have three 
graphs that are maximally separated, then 
adding further graphs can cause no real 
additional trouble. In fact, the most strik- 
ing result we were finally able to establish 
dealt with trying to decompose all graphs 

Los Alamos Science Special Issue 1987 



A Similarity Measure for Graphs 

on n vertices simultaneously into mutu- 
ally isomorphic subgraphs. If U *(n) de- 
notes the smallest number of subgraphs 
needed for such an Ulam decomposition, 
then we have the ultimate generalization 
of Theorem 1 (Chung, Erdos, and Gra- 
ham 1983): 

Theorem 4. For a suitable fixed constant 
c* ,  U*(n) < :n + c* for all n. 

A key concept arising in these investi- 
gations is that of an unavoidable sub- 

graph of a graph. To be precise, we say 
that H is (n, e)-unavoidable if any graph 
with n vertices and e edges contains H 
as a subgraph. For example, any n-vertex 
graph is (n, (")-unavoidable (since there 
is only one graph with n vertices and 
(3 edges and that graph includes all 
possible edges). Also, a d-rayed star 
is (n,  in (d  - 1) + 1)-unavoidable, where 
n > d + 1 and n must be even if d is 
even (Fig. 8). Many beautiful results on 
unavoidable graphs have been proved in 

recent years; indeed, that subject is de- 
veloping, primarily under the leadership 
of F. R. K. Chung, into a central area of 
graph theory. 

We mention finally the concept of a 
universal graph, a concept related to that 
of an unavoidable graph and one moti- 
vated in part by the problem of finding 
Ulam decompositions. If F is a fam- 
ily of graphs, we say that a graph G is 
F-universal if every F E F occurs as a 
subgraph of G.  The connection between 
these two ideas is the following. Let G 
denote the complementary graph of the 
graph G ;  that is, G is a graph with the 
same vertices as G and exactly (and only) 
the edges that G does not have. Thus, for 
a graph with n vertices, 

Now if F(i ,  j) denotes the family of all 
graphs with i vertices and j edges, then 
the statement 

is equivalent to the statement 

Figure 9 illustrates this equivalence. 
Much is now known about F-universal 

graphs for special classes of F. For ex- 
ample, if F = Tn,  the family of all trees 
(connected graphs containing no closed 
loops) with n vertices, then the minimum 
possible number s(Tn) of edges in a Tn-  
universal graph satisfies 

Fig. 7. By considering the graphs GI (a 9k2- 
rayed star), G2 (3k2 disjoint triangles), and 
G3 (Sk(3k  + 1) disjoint edges and a 3k-sided 
polygon with each vertex connected to every 
other), one can deduce that U3(n) is equal to 
or greater than about :n. (The graphs shown 
here illustrate the case k = 2.) 

CALCULATION OF A LOWER BOUND ON U3(n) 

A A A  
AAA 
e = 9k2, n = 3k(3k + 2)  

Minimum Ulam Decomposition of GI ,  Gg, and G3 

3 k 3 k - 1 ) + $ k ( 3 k + 1 ) =  $ ( 9 k 2 + k )  if k  = 4; or 4j - 1  
U(Gl ,Gs,G3)={ '  i k ( 3 k -  ( 1 )  - + j k ( 3k+  1 )+1  = $ ( 9 k 2 + k ) +  4 otherwise 

$ n  

Los Alamos Science Special Issue 1987 



A Similarity Measure for Graphs 

/ A,,., "., '̂ 'x.. 'a 
(a) d =3, n = 4 

A 3-rayed star is (4,5)-unavoidable 

(b) d = 4, n = 6 
A 4-rayed star is (6,l (^-unavoidable 

A d-RAYED STAR IS 
(n, -n(d - 1))-UNAVOIDABLE 

Fig. 8. (a) Since a 3-rayed star is (4,5)-unavoid- 
able, it is a subgraph of the single graph with 
4 vertices and 5 edges. (b) Since a 4-rayed 
star is (6,101-unavoidable, it is a subgraph of 
all four of the graphs with 6 vertices and 10 
edges, (c) Since a 5-rayed star i s  not (6,12)- 
unavoidable, it is not a subgraph of some 
graph with 6 vertices and 12 edges. 

(c) d = 5, n = 6 
A 5-rayed star is not (6,12)-unavoidable 

.......................................................................................... 
UNAVOIDABLE AND UNIVERSAL 
GRAPHS 

Fig. 9. The graph H and its complement H 
illustrate that H is (n, el-unavoidable if and 
only if H is F(n, (9 -e)-universal. H is (6,10)- 

unavoidable; that is, any graph with 6 vertices 
and 10 edges contains H as a subgraph (see 
Fig. 8). Therefore H is F(6,5)-universal; that is, 
any graph with 6 vertices and 5 edges (such as 
a 5-rayed star) is contained in H. 

That result, and many other similar re- 
sults (which have interesting applications 
to the design of VLSI chips, for exam- 
ple) can be found in Chung and Gra- 
ham 1978, 1979, 1983; Chung, Graham, 
and Pippenger 1978; Bhatt and Leighton 
1984; and Bhatt and Ipsen 1985. The 
basic idea here is that a silicon chip (or 
wafer) can have a universal graph G for 
some class of graphs, say for all trees with 
twenty vertices. When a particular tree T 
is needed for connecting various compo- 
nents on the chip, the appropriate edges 
of G can be "activated" to realize T. 

I n the spirit of the current algorithmic 
trend in mathematics, we might ask 
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how hard it is in practice to find the 
minimum1 Ulam decomposition for two 
graphs G and G'. In general that is 
almost surely a difficult computational 
problem. More precisely, the question 
"Is U (G , G') = 2?" has been shown (Yao 
1979) to belong to the notorious class 
of NP-complete problems, an intensively 
studied collection of thousands of com- 
putational problems, including the well- 
known traveling salesman and graph col- 
oring problems (see Garey and Johnson 
1979). Computer scientists believe, al- 
though no one has yet been able to prove, 
that an NP-complete problem is inher- 
ently intractable as the general instance 
size of the problem increases. The res- 
olution of that question remains as per- 
haps the outstanding problem in theoreti- 
cal computer science. 

It's interesting to note that the related 
question "Is U (G, G') = I?" (or "Is 
G Z G'?") is not known to belong to 
the class of NP-complete problems, and 
indeed, many people believe that an effi- 
cient algorithm does exist for its solution. 
A fuller treatment of such matters can be 
found in Garey and Johnson. 

I n conclusion, all of the preceding ques- 
tions can also be asked about numerous 

other combinatorial and algebraic struc- 
tures, such as directed graphs, hyper- 
graphs, partially ordered sets, finite met- 
ric spaces, and so on. Some work on 
those topics can be found in Chung, Gra- 
ham, and Erdos 198 1; Chung, Graham, 
and Shearer 1981; Babai, Chung, Erdos, 
Graham, and Spencer 1982; Chung, Er- 
dos, and Graham 1982; Chung 1983; and 
Chung and Erdos 1983. Clearly, how- 
ever, that area of research remains mostly 
unexplored-and is one more example of 
the prolific mathematical legacy left to us 
by Stan Ulam. 
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